	```1 meter = 100 centimeters 1 kilometer = 1000 meters 1 yard = 3 feet 1 mile = 5280 feet 1 hour = 60 minutes 1 minute = 60 seconds```	1 gram = 1000 milligrams   1 kilogram = 1000 grams   1 pound = 16 ounces   1 ton = 2000 pounds	1 liter = 1000 cubic centimeters   1 cup $=8$ fluid ounces   1 pint $=2$ cups   1 quart $=2$ pints   1 gallon $=4$ quarts
	Arc	$\pi r^{2}$ $2 \pi r=\pi d$ $: s=\left(\frac{m}{360}\right) 2 \pi r$	
	$\begin{aligned} S A & =2(l w+w h+l h) \\ V & =l w h=B h \\ B & =\text { Area of Base } \end{aligned}$	$\begin{aligned} & S A=\text { Sum of Areas of all faces } \\ & \qquad \begin{array}{l} V=B h \\ B=A r e a ~ o f ~ B a s e ~ \end{array} \end{aligned}$	SA = Sum of Areas of all faces $\begin{aligned} V & =\frac{1}{3} B h \\ B & =\text { Area of Base } \end{aligned}$
	$\begin{aligned} S A & =2 \pi r h+2 \pi r^{2} \\ V & =\pi r^{2} h=B h \\ B & =\text { Area of Base } \end{aligned}$		
		$\mathrm{d}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$	$\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
	$\begin{gathered} \sin A=\frac{a}{c} \quad \tan A=\frac{a}{b} \\ \cos A=\frac{b}{c} \end{gathered}$		  Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

